
((2/(~))ma x = 0.I) with a strong injection (R § Consequently, the locally uniform ap- 

proximation is well satisfied for all injection strengths. 
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NONLINEAR AZIMUTHAL WAVES IN A CENTRIFUGE 

A. A. Abrashkin UDC 532.59 

Azimuthal wave motions in a liquid which partially fills a cylinder (centrifuge) 
rapidly rotating about a horizontal axis are discussed in this paper. Under the 
action of centrifugal force the liquid is pressed to the wall of the cylinder and 
moves together with it about the central air core. The vibrations of the free sur- 
face which arise are called centrifugal waves [i]. The difficulties of their theore- 
tical investigation are related to the nonlinearity both of thebasic equations and also 
of the boundary condition for the pressure on the free surface; therefore they have 
previously been studied only by linear methods [i, 2]. Nonlinear azimuthal waves in 
a centrifuge with an infinite radius of the rotating cylinder are analytically de- 
scribed below. The waves found are an analog of Gerstner trochoidal waves on a 
cylindrical surface. An approximate solution for a centrifuge with a finite outer 
radius is constructed by matching the waves obtained to the known linear ones. 

i. We shall consider azimuthal waves in a centrifuge rotating at a constant angular 
velocity ~. They have been investigated in the linear approximation in [2]. In the polar 
coordinate system R, e rotating with velocity ~ the radial u and azimuthal v velocities are 
equal, respectively, to 
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u (B, 0, t ) =  [(Re/R1)2nand- t] ~)[R~n-l[(~-)2n--l]  sin(nO-ant); 

[(%/R1)~ _ q t , ~ ]  L~T/ + 1 r (, ,0-- ,~t),. 

(1.1) 

(1.2) 

where RI and R2 are the inner and outer radii of the unperturbed liquid ring, d is the ampli- 
tude of the sinusoidal profile on the free boundary, n is the azimuthal mode number, and o 

n 
is the frequency of the wave determined by the equality 

_ 2n 1/2 2n + ( n - - l + ( n + l ) ( R f f R , )  ) ((R2/R1) --l)--i" (1 .3 )  
+ 

Waves of  f r e q u e n c y  a move in  the  d i r e c t i o n  of  r o t a t i o n  of  the  c o o r d i n a t e  s y s t e m ,  and 
n 

t h o s e  of  f r e q u e n c y  o move i n  the  o p p o s i t e  d i r e c t i o n .  In a f i x e d  c o o r d i n a t e  s y s t e m  b o t h  n 
types of waves propagate in the direction of rotation of the flow. We note that the trajec- 
tories of the liquid particles are ellipses. 

It is convenient to discuss waves of finite amplitude first for a centrifuge with an 
infinite outer radius R2 (this corresponds to the case R2 >> RI), for which it has proven 
possible to solve the problem exactly. 

It has been shown in [3] that the system of equations of two-dimensional hydrodynamics 
is equivalent to the following equations: 

(w.(w)~ -w~(W).) =o,  ( w , ~ ( w ) ~ -  w, ; (w) . )  = o. (1.4) 

Here W = X + iY, W = X-- iY, n = a + ib, n = a -- ib, X and Y are Eulerian coordinates, a and 

b are Lagrangian Cartesian coordinates, and t is the time; the subscripts denote differentia- 

tion with respect to the corresponding variable. Equations (1.4) express, respectively, the 
conditions of incompressibility of the liquid and conservation of vorticity along the trajec- 
tory. 

One can convince oneself by direct substitution that the expression 

W = G(~)e~' § F(~)e~t~ (1.5) 

where % and ~ are real numbers and G and F are arbitrary analytic functions, is an exact 
solution of the system (1.4). It describes the class of rotational nonsteady flows of an 
ideal liquid, including the known exact solutions -- Gerstner waves and the Kirchhoff elliptical 
vortex [4] -- as particular cases. The trajectories of liquid particles for motions of the 
kind (i,5) will be epicyclolds (hypocycloids), i.e., the particles describe a circle whose 
center in turn moves on a circle. Therefore the authors of [3] have proposed calling this 
type of flow Ptolemaic. 

We shall assume that the waves being studied belong to the class of Ptolemaic motions; 
then the functions G and F are determined from the boundary conditions. Since at infinity the 
liquid rotates as a whole, one should set 

G(N) = N, ~ = e (1.6) 

in the solution (1.5) and assume that IFI § 0 as In[ § ~. We shall find the function F from 
the condition of constancy of the pressure on the free surface Inl = RI. An expression is 
obtained for the pressure from the equations of motion in Lagranglan variables (for example, 
see [5]), and with the relationships (1.5) and (1.6) taken into account it takes the form 

p _ I 
p 2 ~21 ~ 12 + + ~21 F; 2 + R~ (~2~ (~)~ + ~) ~(= ~)~d~ 

In order that the pressure on the free surface remain constant, vanishing of the coeffi- 
cients of the temporal factors is necessary. This is satisfied if 
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_q2 

F (-~) = A~I ~'~ q -~ --~ " ( 1 . 7 )  

where A is a constant. 

We obtain the final expression for W by substituting Eqs. (1.6) and (1.7) into the 
solution r ~lo5j: 

__q2 

W : qe i~ + A~ e~qa~,, ( 1 . 8 )  

whence it is easy to conclude that the trajectories of the liquid particles are curtate epi- 
(q > 0) and hypocycloids (q < 0) with the number of cusps equal to lq -- II, and the profiles 
of the propagating waves are epicycloids with the number of cusps equal to q= -- I; we shall 

2 
assume q to be an integer for time independence of the profile. Taking account of the form 
of the profile, we shall call the waves epicycloidal. 

The pressure distribution in the liquid is specified by the formula 

= [I + ( 1 . 9 )  

i.e., the pressure is constant on the wave profile. 

We shall also point out that for a constant A, which determines the amplitude of the 
waves~ there is an upper limit A = Rq~+~/q 2 when the profile of the free surface has cusps 

x 

(for large values of A loops are formed on the profile -- a physically unrealizable case). 

Epicycloidal waves are rotational. The vorticity ~ for them is written in the form 

2~2 (1 - -  qSA2 ] ~l ] -~(q2+1)) 
/ i - -  qaA2 I q 1-2(q~+l) t 

whence it is evident that the vorticity will be an alternating function for waves with posi- 
tive values of q. 

We shall find the angular rotational velocity of the waves no. It is evident that the 
rotation of the liquid as a whole with frequency no is characterized by the common factor 
exp(i~ot) in the expression for W~ therefore the solution (1.9) will take the form 

W ~ ~ l e ~ ( ~ - ~ o )  t + . a ~  I e " o_ 

in the reference frame in which the profileis motionless. In this system the trajectories 
of the liquid particles coincide with the shape of the profile; therefore the equality qn -- 

~o = q2(n -- no) is valid, from which we find no = q(q + l)-X~. 

In the reference frame moving with angular velocity ~ the frequency of rotation of the 
wave profile is equal to (q + l)-In, so that waves corresponding to negative q move in the 
direction of rotation and waves corresponding to positive q move in the opposite direction. 
The rotational velocity of the profile for linear waves in this same reference system is 
equal to o~/n, and in the case of an infinite radius of the centrifuge (R2 § ~) it is written 

n 
as 

(~ V~-45 +i)" 

getting n = q2 _ i, we obtain that the frequencies of rotation of the profiles of linear and 

epicycloidal waves coincide (the plus sign in front of the root pertains to waves with q > 0, 
and the minus sign corresponds to waves with q < 0). We shall use this property of epi- 
cycloidal waves to find an approximate solution for waves in a centrifuge with a finite 
wall radius. 

2. It is evident that the exact solution for epicycloidal waves becomes invalid for a 
centrifuge with a finite outer radius, since the normal component of the velocity on the 
wall does not vanish. At the same time linear waves (1.1)-(1.3) satisfy this condition; there- 
fore we shall assume that nonlinear rotational waves localized near the free surface are 
matched at some depth to linear ones. It is clear that for such wave motion the boundary 
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conditions on the free surface and the wall will be satisfied and it remains only to satisfy 
the continuity conditions of the normal velocity and the pressure on the splice boundary. 

The matching surface R = R* emerges for linear waves as a free surface (one should re- 
place R~ by R* in formulas (1.1)-(1.3)). We shall assume that the amplitude of the deviation 
of the profile on this surface d is small: d << n -~ (RI -- R*) (we note that the amplitude of 
vibrations of the free surface may be of the order of the wavelength); then the radial veloc- 
ities of the waves will be approximately normal to the splice boundary. In a reference sys- 
tem rotating with angular velocity ~ the radial velocity u* of the exact solution (1.9) is of 
the form 

u * =  - -  (q - -  t )  f~Ar -q~ s i n  [(q~ - -  1) r + (q - -  t )  f / t ] ,  (2.1) 

where r and ~ are the modulus and phase, respectively, of the complex Lagrangian coordinate 
~. Due to the smallness of d, we shall replace the Eulerian coordinates by Lagrangian ones in 
formula (i.i); then 

u = do~s in (nq9  - -  6~ t ) ,  (2.2) 

We shall consider waves for which the inequality (Ra/R*) n >> i is valid; in this case ~ = 
n 

--(q -- i)~ (we recall that n = q= _ i), and comparing relations (2.1) and (2.2), we obtain 

R* = (Al~/q ~. 

In the fixed coordinate system the pressure on the surface r = [HI = R*, which is deter- 
mined by formula (1.9), is constant and emerges for linear waves (1.1)-(1.3) in the role of 
the pressure on the free surface; therefore the continuity conditionis easily satisfied by 
the selection of the appropriate constant in the expression for the pressure of linear waves 
[2]. 

We note that in the rotating reference frame liquid particles move on circular trajec- 
tories in epicycloidal waves and on ellipses, which degenerate on the wall into straight lines, 

in linear waves. 

We shall also point out that the effects of surface tension, which have been neglected in 
this paper, are unimportant up to wavelengths of the order of (T/o~2Rx)I/z, where T is the 
surface tension coefficient and 0 is the density; therefore there exists a lower limit to the 

-- ~'( ~2R x/2 wavelength of the approximate solution obtained: Rx/(q = i) >> ~/.0 i)) �9 

3. The properties of epicycloidal waves are very similar to the properties of Gerstner 
trochoidal waves on the surface of an infinitely deep liquid. For both types of waves the 
pressure on the wave profile is constant; in the reference frame in which the waves are motion- 
less the trajectories of the liquid particles are circles. Finally, the form of the free 
surface of these waves is determined by the related curves -- an epicycloid and a trochoid, 
so that in essence these are Gertsner waves on a cylindrical surface. At the same time it 
should be noted that in contrast to Gerstner waves the actual source of the vorticity for epi- 

cycloidal waves is clear -- the rotating liquid. 

Continuing to draw analogies between the two types of wave motions, we shall point out 
that it is easy to obtain for waves in a heavy liquid of finite depth H an approximate solution 
similar to that discussed in Sec. 2 in which Gertsner waves are matched to linear gravity 
waves at some depth H*, whose value is determined from the condition of continuity of the nor- 
mal component of the velocity. It is necessary to impose the following constraints on the 
wavenumber k: kB exp(--kH*) << i (smallness of the wave amplitude on the matching boundary in 
comparison with the wavelength); here B is the rise amplitude of the free surface; in the 
general case it is not small and has the upper limit i/k; k(H -- H*) >> i (absence of a tangen- 
tial discontinuity on the matching boundary) and k(T/pg) I/2 << i (neglect of capillarity, and 

g is the free-fall acceleration). 

In conclusion the author expresses his gratitude to E. I. Yakubovich for useful discussion. 
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BOILING MODEL FOR A FLUIDIZED BED OF PARTICLES 

S. P. Kiselev and V. M. Fomin UDC 539.529 

A mechanism for boiling of a fluidized bed was examined in [i]. Due to hydrodynamic 
instability the solid particles acquire random motion, and as a result of collisions 
between particles part of the energy of random motion is converted to rotation of 
the particles. A rotating particle experiences a Magnus force which considerably 
increases the random motionand leads to spontaneous boiling of the layer. For this 
mechanism there is typically a minimum boiling time Ty, defined basically as the time 

to develop a hydrodynamic instability. It is shown in this study that besides the 
spontaneous mechanism there is an induced mechanism for boiling of the bed arising 
from the generation of random motion in one particle layer. Particles in that layer 
boil, transmitting a perturbation to the energy of the next layer, and leading to 
layer boiling in a manner analogous to the propagation of a detonation wave in solids. 

I. We consider a bed of rather densely packed spherical particles at rest, supported on 
a grating permeable to gas, through which gas is circulated from below. When a certain gas 
velocity is reached the particles become "weightless", i.e., the gravity force becomes equal 
to the drag force. Such a bed of gas and particles is conventionally called fluidized. 
However, this state of the bed is unstable, and after a certain time the bed boils. The 
behavior of the particles in a boiling bed is reminiscent of that of gas molecules, and 
therefore by analogy we shall call them a gas of particles. The system of equations describing 
the motion of the mixture, allowing for the Magnus force, as given in [2], and in the notation 
adopted in [3], has the form 

09--'! q- V (PlVl) ~ 0,, Ol = Pliral, at 

092 
o--/- + V (92v2) = 0, 92 =- 922m~, 

d l V l  _ _  _ _  - -  

Pi dt m l V P l - -  f12, dldt ( ) OOt( ) -~ ( v l ' V ) '  

d~v~ __ 
02 dt m2VPl + fl~ - -  Vp2 + g92, 

' / qa2 Q~ 
d'-"~ ~- P l  dt 1911 ] 91 9 i ' 

k 
d2e2 __ q12 _~ QD, 
dt Pz "-~-2 ' qa2 = • ( T 1 - -  Tz), e2 == c~T2, 

d2( ) d (  ) q_ (vu.V) ' e l = t i T 1 ,  e z = 3 c 2  ' dt Ot 

d~e 2 d2 / t \ Q 1,17m~/a, 

(i. i) 
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